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Abstract

Biological organismsdisplayan astonishingcapability
to learnnew skills andadaptto dynamicenvironments
thatfaroutperformsany computeror robotsystem.This
paperpresentsanapproachto robotskill acquisitionthat
takesconceptsfrom developmental theory to structure
thelearningproblemandprovidesamechanismto gen-
eratedevelopmental schedulesfor a robotsystems.The
approach usesa developmental assemblerto construct
reusableandtemporallyextendedactionsin asequence.
All behavior is initially constructedfrom a set of in-
natecontrollawsandeventsthatdelineatecontroldeci-
sionsarederived from the patternof (dis)equilibriaon
a working subsetof sensorimotor policies. We show
how this architecturecan be used to accomplishse-
quentialknowledge gatheringandrepresentation tasks
andprovide examplesof developmentallearningusing
a quadrupedalwalking robot.

Intr oduction
Biologicalsystemsexhibit capabilities to acquire new skills
and address novel tasksin complex environments that far
surpassexisting computer androbot technologies. We pro-
posethatpartof this successis theiruseof innatestructures
anddevelopmental mechanismsto guide learningwhile in-
teractingwith the environment. In particular, we propose
thatkinematic,dynamic, andneurologicalpropertiesareex-
ploited to simplify and structurelearning. Developmen-
tal processesconstruct increasingly complex representations
from a sequenceof tractablelearningtasksdrivenby a set
of internal and environmental reinforcers. In this paper
we presentan approach to developmental organization in
robotic systemsthat is aimedat providing similar learning
andskill acquisitioncapabilities.

Behavior in biological systemsis frequently learnedin
stages.By Piaget’saccount thesensorimotor stagein human
infants,for example, lastsroughly 24months (Piaget1952).
In the first four months,reflexive responsesbegin to orga-
nize into coherent motorstrategies,andattentional mecha-
nismsbegin to emerge. From four to six months,primary
circular reactions arepracticed. Betweensix andeighteen
months, theseprimarycircular reactions leadto behavioral
models of theworld thatapply to “classes”of interactions.
A cornerstoneto the theory describing suchobservationsis
thepropositionthatcontrol knowledgecanberepresentedin

amanner thatsupportsgeneralization. Thispaperexploresif
acommitmenttosuchfigurativeschematacanleadto theac-
quisitionof hierarchical control knowledgethatcanbeused
to similaradvantagein theorganizationof robot behavior.

In thispaper wepresentanapproachto developmental or-
ganizationin robotic systemsthatusesa developmental as-
semblerto constructandre-usebehavioral schemata(Lakoff
1984; Mandler1992). Startingfrom aninitial setof figura-
tive schemata,corresponding looselyto innatereflexes,this
approachacquiresnew schematathrough interaction with
the world underthe guidanceof a developmentalstrategy.
We show how this approach can yield not only improve-
ments in learning capabilitiesalonga developmentaltrajec-
tory but alsoleadsto the acquisitionof control knowledge
andabstractknowledgerepresentationsgroundedin behav-
ioral skills. Theoperation of this approachandits potential
benefitsareillustratedwith a sequenceof experimentson a
quadruped robot platform.

Structuresfor Learning and Development-
Lessonsfr om DevelopmentalTheory

Investigatingdevelopment in biology reveals a number of
conceptsthat areimportant for its successandthat, if cap-
turedin an appropriatecomputationalframework, canalso
be usedto constructrobot control systems. In particular,
studiesin biology andpsychology show how the structure
of theorganismanddevelopmentalmechanismsareusedef-
fectively to reducethecomplexity of skill acquisition.

Considering, for example, aninfantasanadaptivesystem
in anopenenvironment, theproblemof establishingamono-
lithic control systemis truly daunting. However, studiesof
development show thatcomplex sensorimotorprocessescan
temporarily compromiseexpressive power to reduce com-
plexity. Managing this tradeoff effectively canleadto com-
putational tractability in the short term andgrowth toward
optimal behavior in the long term. We advocatethe rel-
atively optimistic position that traditionsin robotics,con-
trol theory, AI, andlearningareadequatecomputationalac-
counts of someaspectsof behavioral developmentandcan
thusform abasisfor adevelopmentalrobot control systems.

DevelopmentalTheory
Epigeneticdevelopmental theory proposesthatprimitivere-
flexes,expressedasneuro-anatomical structures,aretheba-
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sic building blocksof behavior. In this model,behavior is
constructed from combinations of reflexes in responseto
reinforcement.Ontogenetic developmental theory suggests
that coordinatedbehavior appearsandsubsequently disap-
pearsin orderto servea developmental function.

We contend thatreflexesserve asanepigeneticcomputa-
tional basisandthat someareshort-lived andserve an on-
togenetic knowledgeformation role. For example, thestep-
ping reflex is likely theantecedent of walking, but no sim-
plereflexiveprecursorhasbeenidentifiedfor reaching tasks
which require multiple coordinated reflexes (Asymmetric
Tonic NeckReflex (ATNR), palmargraspreflex, distal-curl
reflex, Moro (clasp)reflex, startle,etc.). To understandde-
velopmentalprocessesweneedtherefore to understandhow
knowledgeandstructure interactover time to acquireskills.

Biological observationsanddevelopmentaltheories sug-
gest a number of essentialcomponents of developmental
structure, namelythemechanism which modulatesphysical
behavior, reflexesasthebuilding blocks of behavior, matu-
rationalmechanismsthatguidedevelopment, anda learning
systemthatencapsulatesandre-usescontrol knowledge.

Kinematic and Dynamic Structur e In humansandother
biological organisms,kinematic propertiesof the skeleton
andthedynamicsof themusculature strongly influencede-
velopment. For example, Bizzi et. al. suggest thatmuscle
dynamics influencethe suitability of motor control (Bizzi,
Chapple,& Hogan 1982).

Roboticistshave similarly usedkinematics and dynam-
ics to fashionmechanismswith appropriatepropertiesto fa-
cilitate behavior. For instance,Salisbury (Salisbury 1982)
designedthe Stanford/JPL robot handto be kinematically
isotropicwhengrasping a 1 inchsphere.Similarly, intrinsic
dynamics hasbeenusedto designpassive walking mecha-
nisms. However, our ability to addresstasksthrough prop-
ertiesof themechanismremains adhoc. As a consequence,
a developmentalrobot control systemhasto appropriately
model andcontrol thephysicalstructureof themechanism.

Reflexesand Composability The CentralNervous Sys-
tem(CNS) is organizednot in termsof anatomic segments
but according to movementpatterns (Aronson1981). The
basicformof packagedmovementpatternis thereflex which
canresidein thecentral andperipheralnervous systemand
rangefrom involuntary responsesto cortically mediatedvi-
sualreflexes. Theseprocessescontributeto theorganization
of behavior at the most basic level by constituting a sen-
sorimotor instruction setfor thedeveloping organism. The
so-calleddevelopmental reflexes serve ontogenetic goals
by guiding skill acquisitionandarenot elicited in normal
adults.In additionto providing sensorimotor function, these
reflexes alsoexercisethemusculatureandfocus learning on
conditions underlyingdevelopmentalmilestones.

Thecompositionof reflexescanleadto morecomprehen-
sive behavior. For example, thereis evidencethata discrete
number of individual force fields are superimposedin the
frog’s leg/spineto yield continuouslycontrollable leg posi-
tion (Mussa-Ivaldi, Bizzi, & Giszter1991). Moreover, cer-
tain motor patterns repeatin a regular pattern. Some,like
walking,swimming,or flying, aretheresultof CentralPat-

ternGenerators (CPGs). Wolff suggestsmethods for com-
posing oscillatorsin order to addressnovel initial conditions
andcontexts (Wolff 1991).

Similar ideas have also been used in the design of
robotic systems. For example, Williamson has demon-
stratedthe useof simpleoscillatorsfor periodic manipula-
tion tasks(Williamson1999). In addition, arangeof control
approacheshave beendevelopedwhich constructbehavior
from a setof basicactions,including a range of behavior-
basedrobot control techniques (see(Arkin 1998) for an
overview), andBurridge et. al.’s juggling robot (Burridge,
Rizzi, & Koditschek 1999).

DevelopmentalSchedulesand Maturation
Behavior andknowledgeacquisition in biological systems
usuallyoccursin stagesfollowing a developmental sched-
ule. Thescheduleis hereenforcedlargely by maturational
mechanismsthat limit thesetof availablephysicalandsen-
sory resources.As a consequence,behavior development
tends to initially focus on a limited setof degreesof free-
domandthenextendsto finally incorporateall thekinematic
structures. For example, Berthieret. al. (Berthier, Clifton,
McCall,& Robin1999)publishedconsistentfindingsof lon-
gitudinal studiesof infants(6-30 weeks)during theonsetof
visually- andacoustically-guided reachingtasks. Initially,
reaching movementsappear to be focusedprimarily in the
shoulder andtorso.Large proximal degrees-of-freedomare
engagedfirst while theintrinsic musclesof theforearmand
hand stiffenedvia co-contraction.

Developmental Milestones The maturational processes
describedabove leadto a developmental trajectorythatoc-
cursin a number of stages.Fiorentino presents a coarsede-
scriptionof thedevelopmentalprocessduring thefirst year
of aninfant’s life (Fiorentino 1981). A sequenceof postural
stability tasksis identifiedthatstartswith theinfantacquir-
ing theability to control its head. In this task,information
is assumedto beheavily weightedtowardvestibular, propri-
oceptive, and(later) vision organs. Figure1 illustratesan
earlysequencein which a child learnsto raiseits headoff
thefloor. Theinfantusesoptical-andlabyrinthine-righting
reflexesthatdevelop over thefirst few weeks.Thesemecha-
nisms,from theprone position,interactwith thesymmetric
tonic neckreflex to developa quadrupedalposition.A pro-
prioceptive reflex calledthe”body-on-head”reflex helpsto
rotatethetrunk in responseto a headangle.Theinfantthus
acquires policies for rotatingthe trunk andheadaboutthe
body axisto pantheheadandeyes.All of this leadstoward
stabilizingtheinfantin sitting andlaterstandingpostures.

As shown throughoutthissection,biological systemsrely
considerablyon reflexive structures that not only generate
behavior, but shapetheacquisition of control knowledge. In
the following, we proposea computational mechanism to
implement a similar form of stagedknowledge formation
and learning. This approachhasalready be appliedsuc-
cessfullyto a number of robot platforms, including multi-
fingeredhands,mobile robots,andwalkingplatforms,to ac-
quire control schemata.Someof theseschemataandtheir
potential placein an “inf ant-like” developmental sequence
areindicated in capitalnamesin Figure1.



Figure 1: Superimposing a developmental sequenceob-
servedin human infantswith schematadevelopedonrobotic
platforms.schemataareshown in capitalletters.

A Model for Developmentin Robots-
A DevelopmentalAssembler

Figure2 outlinesa computationalframework for robot sys-
temsthat addresseslearninganddevelopment and that in-
corporatessomeof theprinciplesof structure discussedear-
lier. Thisframework constructsbehavior from acompactset

Figure2: Nativestructure,learning, andbehavior in aninte-
grateddevelopmentalassembler.

of figurative schematain the control basisunder the guid-
anceof a developmental schedule. During this process,
the systemalso learnsmodelsof the interaction dynam-
ics. Schemataare learned using a reinforcement learning
componentin a Semi-Markov DecisionProcessframework
andcanbere-usedasadditional elements in thecontrol ba-
sis.Theseschemata,together with theirassociateddynamic
models, serve as control knowledgefor subsequent tasks.
During learning, onedimensionof development is viewed

as a schedulingproblem in which a strategy for engaging
sensor, motorandcomputationalresourcesis sought to sat-
isfy a task. Eachstageof this process is characterized by
developmental parameters;the tasks,theparticipating con-
trol objectives, the sensorandeffector resourcesallocated,
andaxiomsthatdefinelegal combinationsof behavior. The
overall objective is to progressthrough a sequence of such
designs to assemblenew behaviors.

Action

The framework presentedhere is designed to learn a be-
havior hierarchy by composingmore primitiveactions.The
Control Basis(Huber, MacDonald, & Grupen1996; Coelho
Jr. & Grupen 1997) in Figure 2 is designed to provide a
combinatoricbasisfor control thatsupports therepresenta-
tion of declarative andprocedural control knowledge. The
most primitive actions,loosely corresponding to reflexes,
areclosed-loopcontrol processesconstructedby combining
anartificial potential(or objective),

�����
, sensoryabstrac-

tions, � ���	�
, andgroups of effectors, 
 ���
�

. The ef-
fectof anactionplaysout over timeasthecontroller actsto
optimize theaction’s control objective. Modeling primitive
actions ascontrollershereimpliesthati) actionsareasymp-
totically stableandgeneratetrajectories toward locally op-
timal conditions with respectto the objective function, ii)
controllerssuppresslocalperturbations,iii) thedynamicsof
the controlled systemprovidesuseful discreteabstractions
of theunderlyingcontinuousstatespace,andiv) time is me-
teredby discreteobservableevents in thetransientresponse
of thecontrolledsystemratherthanby anarbitraryclock.

Concurrent Control Composition To further increase
theexpressiveness,theControl Basisframework permits to
activatemultiple controllers concurrently. To obtaina pre-
dictable behavior thecompositionusedhereutilizesthehier-
archical subject-tooperator, � , which,similar to theMoore-
Penrosepseudoinverse(Yoshikawa 1990), limits actionsof
thesubordinatecontroller to stepswhich do not counteract
the objectives of the dominant controller. For example, a
pair of controllers,

� ����� � � �����
, will descendthepotential

of the superior controller,
�������

, andwill superimposeonly
thoseaction componentsfrom the subordinate controller,� �����

, that do not increasethe valueof the superior poten-
tial. Examplesof this approach to multi-objective control
include posture optimization while reaching for agoal.

Learning, in this framework, is focusedonfindingcombi-
nations of controllers thatcreatefavorabledynamics. New
policies canbefound in termsof existingcontrollers.

Stateand SystemModeling

TheDynamicModeling componentof Figure2 is responsi-
ble for modeling the signaturedynamicsof the controlled
process. For example, Figure 3 plots the potential,

�������
,

against its rateof change for a graspcontrolleras it posi-
tions fingerson an unknown object(CoelhoJr. & Grupen
1997). As canbeseen,thecontroller hasmultiple equilibria
because therearemany control contexts, i.e. many differ-
entobjectsandgraspsolutions.Whenpolicy �� is engaged,
thepatternof membershipin theseempirical models, !#"%$ ,



Figure3: Thepatternof membershipin governing dynamic
models servesto identify a discretestatefor thepolicy.

changesover timein amannerthatidentifiesthecurrent con-
trol context. Model $ is a specialmodel signifying conver-
gence,i.e. &('&*) +-, . Model $ is the only model native to
everycontroller - all othermodels arecontroller-specific.

Thisperspectivehasrootsin methodslikeHiddenMarkov
Models(HMM) wherecategoriesarefound by parsingase-
quenceof events.Likewise,Takens’stheoremdescribeshow
patternsin nonlinear dynamicalsystemsarerelatedto hid-
denstates.In our architecture, closed-loop controllers pro-
ducemechanical artifactsthat distinguishcontrol contexts.
Assertionsabout the system’s stability have beenusedto
form thestatespacefor suchsystemsasin theattractorspro-
posedby Huberet. al. (Huber& Grupen1997) or the limit
cyclesproposedby Schaalet. al. (Schaal & Sternad1998).

Controllers aredistinguishedby their sensoryandmotor
resourceallocations.Thedynamic stateof thecontroller can
beexpressedbyapredicatevector ./ ��021 thatdescribesthe
statusof

�  by identifying the subsetof empirical models3  54
687:9<;>=?=@=BA thatareconsistentwith therun-time obser-
vations. For instance,an elementof .C canrepresent con-
vergence,implying that, for example, a particularstanceof
a walking machine is stable. We found that a small setof
suchmodelsis sufficient to recover awidevarietyof control
contexts (Coelho2001).

In general, an agent’s predicate state . reflectsthe cur-
rent statusof several active controllers. We denote byD � 3  54/E �  � . ��� the probability that model

3  B4 explains the
observedtimehistorywhencontroller

�  is engagedin state. . The systemidentification task is to learn D � 3  54 E �  � . ���
for all predicatestates. .
Reinforcement Learning
Reinforcement Learning (RL) is a natural paradigm for
programming thesesystemssince it doesnot require ex-
ternal supervision and learnsfrom potentially delayedre-
wards(Barto,Bradtke,& Singh1993). Here,RL is usedto
solvethetemporal creditassignment problemfor anoptimal
policy with respectto agivenreinforcer.

Q-learning is usedto compute thediscountedsumof fu-
turerewardsfor eachstate-actionpair, F � � 6*G � . Thecontrol
policy specifieswhichaction,G , is to beselectedfrom every
state,� . Initially, actionsarechosenrandomly to explore the
consequencesof control decisions.Over time the rewards
obtained areconsolidatedby updating thevaluesof F � � 6*G �
asthesystemtransitions from state� ) to state� )�HJI :F � � ) 6*G )

� 9 � ; "LK � F � � ) 6*G )
�CM K ��N )�HJI

MPORQLSUT� F � � )�H�I 6*V
���

where
N
) is the reward received at time

�
, K is a learning

rate,and
O

is thediscounting factor. As thelearning process
progresses,thecontrol policy becomesincreasingly focused
onexploiting high-qualityactions.

One of the major drawbacksof reinforcement learning
methodsis thelargenumberof trials requiredto find agiven
policy. A secondproblem in exploration-basedlearning is
the needto take random actionswhich can lead to catas-
trophic failures. The developmentalmechanism described
in thefollowing section is designed to addresstheseshort-
comingsandleadto highperformancelearningsystems.

Aspoliciesareconstructed,schematathatcapturereward-
ing behavior are extractedand incorporatedinto the con-
trol basis. Subsequent policiesmay explore re-using these
schemata which provide a temporal abstractionof theprob-
lem domain. This hierarchicalapproachis formalized here
asa Semi-Markov DecisionProcess(SMDP).

DevelopmentalSchedule
The set of primitive actions from a given control basis,�XWZY>[]\^W_YU[a`

, is quite large. This is good from theper-
spectiveof expressivepowerbutbadfor computationalcom-
plexity. Therefore,aspectsof developmentalstructure have
beenimplementedto biasexploration towardcomputation-
ally tractablesubsetsof theactionandstatesetsin orderto
accumulatecritical control knowledgesequentially.

Theresourcemodel expressesconstraints on thesensors,
effectors,andpotentialfunctions/policiesthat maybecon-
sideredwhengeneratingactions.As suchit models theef-
fect of the maturationalmechanismsdiscussedpreviously.
To incorporatethe “maturational” constraintsinto the con-
trol system,the approachpresentedhereusesthe Discrete
Event Dynamic Systems(DEDS) formalism (Sobh et al.
1994) to constrain the rangeof legal interactions to those
that i) satisfyreal-timecomputing constraints, ii) guarantee
safetyspecifications,andiii) areconsistentwith kinematic
anddynamic limitations. In this formalism the stateof the
systemis assumedto evolvewith theoccurrenceof discrete
eventsandasupervisor takestheform of anondeterministic
finite stateautomatonin which statesarepatternsof mem-
bership in dynamicmodelsandtransitionsrepresent concur-
rentcontrolsituations.Logical conditions on the predicate
vector influencetherange of control options.

Example: Learning Quadrupedal Gaits
To demonstratethepresentedcontrolapproachandto illus-
trateits benefits,this sectionpresentsa sequenceof experi-
ments usingthewalkingplatform“Thing” (Figure 4).

Figure4: Thing, a12degreeof freedomquadrupeddesigned
to learnwalkinggaitsusingthedevelopmental assembler.



Thingis asmall,12degreeof freedomquadrupedthatwas
“bornb ” with threeprimitivecontrolobjectives,

�:���
, in the

control basis;namely, force,position,andkinematic condi-
tioning objectives. Controllers areconstructedby associat-
ing objectives with resourcesandconcurrentcontrollersare
constructed using subject-tocompositions (Huber & Gru-
pen1997). A developmentalsequencewasimplementedin
which Thing learnssimplepoliciesandthenusesthemas
abstractactionsin a behavioral hierarchy.

DevelopmentalConstraints
Thedevelopmental sequencewasimplementedin thedevel-
opmental assemblerastime-varying constraints which rep-
resent“maturational” processesanddomain requirements.

“Maturat ional” ResourceConstraints Thesimplestgait
in Thing’s repertoire achieves reward by accumulating a
heading change. The resource model for this ROTATE
schemaconsiders recruiting three-leggedtripodstancesinto
controllers. Objective type

�
I is a Zero Moment Point

(ZMP) controller parametrizedby thesensorsandeffectors
with which it is implemented. Sensorsdesignate the posi-
tion of threefoot placementsandoneof thesethreelegswill
becontrolled to minimizedthenetmomentaround theplat-
form’s centerof mass.�

Idc
0 3fehg�i�j ��N i�klk 
 N2mmm  ?n

���
)o)�p  

�rq
&s�t )  ?u

�wv@��x
Therearefour unique tripod stancesfor a quadruped,each
of which canelectto applyZMP control to oneof the legs.
This recruitment model yields12unique controllers.

Further, the resource model includes a singlekinematic
conditioning controller that looksat theconfigurationof all
4 legs andexecutesmovementsto rotatethe robot’s body
while leaving thefoot placement fixed.Objective

�zy
is thus

a kinematic conditioning (KC) controller thatoptimizesthe
condition of thelegsby rotating therobot’s heading, { .�ay

c |Z}hg�i�j ��N i�k~k 
 Ndmmm  ?n
���
)o)
�
)�p s
�rq
&� � s &  @n

x
Theresourcemodel,therefore,providesafirst layerof de-

velopmentalstructure, organizinga setof 13 unique primi-
tivecontrollers for therotatetask.

QuasistaticConstraints If thereare A models of control
dynamicsfor eachcontroller, thentherecanbeatmost

Y I��(� 1
uniquemembershippatterns. However, many of thesestates
areunreachable.Moreover, Bernsteinsuggestedthatmuch
canbe learnedin a quasistaticallystableapproximationof
the unconstrainedstatespace.In this case,we require that
therobot alwaysmaintainsat leastonestablestance.If we
definetheconvergencecondition (model F in Figure3) to be
satisfiedwhenthetripod is stablethennoadditional models
arenecessary. Moreover, for eachZMP controller, the sta-
bility assertionis independentof which leg is assignedas
theeffector. Therefore,thestatusof the12 ZMP controllers
canbe captured in 4 binary predicates,D  , eachindicating
theconvergenceof aZMP controller to astableequilibrium.
With thekinematicconditioning control, this leadsto 5 bits
of stateinformationfor thequasistaticcondition.

� � G � 
 9 � D]�R� � I mm
� I
y

�
� D I �

�
I mm
� y ��

� D y � � I mm I
y
��
�

D � �
�
I mm
� I���

� Do� � � y mm � I
y
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In the experimentsreported, we allowed up to threeob-
jectivesto beaddressedsimultaneously, leadingto 1885ac-
tions. To guaranteethat the robot will not fall, it is neces-
sarythatat leastoneZMP controller is nearequilibrium at
all times. This specificationis expressedas a logical dis-
junction, D����
D I ��D

y �
D � . Thisstructuralaxiomis usedas
a filter during exploration, reducing theaverage number of
legal actionsto just 157.

Compiling Control Knowledge
Using thedevelopmentalmechanism describedhere,a first
experimentwasusedto learntwo basicwalking schemata,
namely aROTATE schemafor rotationin placeandaSTEP
schemacorrespondingto a simplesteppingpattern.

The ROTATE Schema In the first learningtask,the de-
velopmentalconstraints introducedin theprevioussections
wereappliedanda rewardstructure wasprovidedto reward
control sequencesthataccumulateangular rotations:N 9�� { 9 { 1 "Z{ 1�� I
Index A heredesignatesconsecutiveconvergenceeventsand{ 1 is theheading following convergenceof action G 1 . The
rotation gait illustratedin Figure6, wherethebit vectors in
the statesindicatethe valuesof the five convergencepred-
icates,wasacquiredreliably in about 11 minutes,on-line,
in a singletrial. Figure5 shows theaverage learningcurve
over10 learningtrials for theROTATE Schema.
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Figure 5: Performanceof theROTATE gait during learning
(left) andduring execution (right).

Figure 6: TheROTATE policy with contingenciesfor a va-
riety of run-time contexts. The central cycle hastransition
probabilitiesgreaterthat95%.

The STEP Schema After the ROTATE gait waslearned,
the resource model waselaborated to support resource en-
gagementsthat could translatethe robot’s centerof mass.



Thenew designcontains10statepredicatesand175actions
onav� erageperstate.A rewardsignalwasprovidedthatwas
proportional to theforwardmotion of therobot, resultingin
a STEPschemathat representsa simple forward stepping
pattern.Figure7 shows thecorrespondinglearningcurve.

0 10,000

-0.01

0

0.0015

Control Steps

R
ew

ar
d/

S
te

p

10,000 20,000

-0.01

0

0.0015

Control Steps

Figure 7: Performanceof the STEP gait during learning
(left) andduringexecution (right).

Re-UsingSchemata- The TRANSLATE Schema
Oncethe ROTATE andSTEPschemataarecaptured, they
canbeincludedin thecontrol basis,makingthemavailable
for re-useastemporally extendedactions.

To evaluatethe relative impact of thesebehavioral ab-
stractionsandtheassociatedcontrol knowledge in thecon-
text of a new task,an additional seriesof experimentswas
performed. For theseexperiments,the resourcemodelwas
first furtherenrichedto includethepositioncontroller, yield-
ing 12 statepredicatesand an average of 231 actionsper
state.Thena rewardsignalproportional to thereduction in
distanceto thegoalwasprovided.N 1 9�� 1�� I " � 1
where� 1 is therobot’s distancefrom thegoalafterevent A .

Usingthis setup,a baselineexperimentwasperformedin
which noneof the schematawas available. Subsequently,
two moreexperimentswereperformed,thefirst usingonly
theROTATEschemaandthesecondusingboththeROTATE
andtheSTEPschemata.Figure8 comparestheperformance
of thethreeTRANSLATE designs.
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Figure8: Performanceof the TRANSLATE schema.The
left panel compares learning performance without any
schema,with the ROTATE schema,andwith the ROTATE
andtheSTEPschemata.Theright panelshows thepercent-
ageof executedstepsfrom a schema.

Each10,000 control actionshererequired about 2 hours
of run-time in a singletrial. After roughly 2 hours, theper-
formanceof both larger problemdesignsexceed the more
economical basesystem.Moreover, it canbeseenthat the
systemwith bothschemataeasilyoutperforms theonewith

only theROTATEschema(although thegaitslearnedin both
casesreachthesameasymptoticperformanceafterapproxi-
mately110,000steps).

Thegraph on the right of Figure8 shows thepercentage
of timesthatanactionexecutedin theTRANSLATEschema
waseitherfrom the ROTATE or the STEPschema.These
curvesshow that in thecaseof theTRANSLATE gait with
only theROTATEschemathefinalgaitusestheschemaonly
approximately2% of the time. However, even this limited
usepermitsthesystemto successfullyorient itself with re-
spectto thegoalandthusindirectly focusesthelearning pro-
cessonacquiringawalkingpatternwithouthaving to worry
about alignment. In thecaseof theTRANSLATE gait with
both, the ROTATE andthe STEPschemata,schemausage
increasesto more than50%, indicatinga significant re-use
of thebasicsteppingpatternencodedin theSTEPschema.
The learning processcan herefocuson the acquisitionof
transitiongaits and on the improvementof the basicstep
patterninto a robustTRANSLATE gait.

Hierar chy - The MAZE-SOLVE Schema
Onceschematafor rotatingandtranslatingarein place,nav-
igating in a clutteredenvironmentcan be formulated as a
policy for deciding when to engage thesetemporally ex-
tended actions,one at a time in responseto observed ob-
stacles.We demonstratedthat Thing canfind a pathfrom
point A to point B with no prior knowledgeof theinterven-
ing obstaclesusinga forward-looking IR proximity detector
to observe obstaclesenroute andmaptheminto its config-
uration space.Thelocomotion planfollows a streamlinein
a harmonic function pathcontroller by selectingoneof two
temporally extendedactions(ROTATE,or TRANSLATE) in
a 4 statefinite stateautomaton.Thestateis derived from a
2 bit “interaction-based”statedescriptor. Onebit describes
theconvergencestatusof therotatecontroller, andtheother
describestheconvergence statusof the translatecontroller.
Figure 9 shows anexample runof therobot.

Conclusionsand Futur e Work
This paperpresentsan approach to robot control that uti-
lizes developmental mechanisms to automatically generate
control knowledgein termsof behavioral schematathatcan
bere-usedin subsequenttasks.Takingguidancefrom devel-
opmentaltheoryin biological systems,this approachbuilds
behavior from a setof closed-loop controllers, correspond-
ing looselyto reflexesin biological systems.Skill learningis
guidedwithin thedevelopmentalassemblerusingadevelop-
mental schedulethatimposesconstraintsin a DEDSframe-
work to simulatetheeffectsof maturational mechanismsin
biological systems. In particular, it imposestime-varying
constraintson the setof sensorandeffector resourcesthat
canberecruitedby thecontrolelements.

A sequenceof experimentswasperformedthatillustrated
the potential of the proposedapproach in the context of
a developmentaltrajectory for a quadrupedrobot. These
experimentsclearly demonstratethe benefitof incorporat-
ing learnedcontrol knowledge in the form of behavioral
schemata andillustratesthepotential for reductions in state
spacecomplexity oncecompetent schemataarelearned. We



Figure9: The MAZE-SOLVE schemahas3 actions - RO-
TATE, TRANSLATE, and a harmonic function path con-
troller. TheMAZE-SOLVE schemadescendstheharmonic
potential usingTRANSLATEsubjecttoROTATEandsolves
all mazesfor whichthereexistsapathattheresolutionof the
configurationspace(illustratedon theleft).

are currently in the processof investigating techniquesto
further generalize learned schematainto figurative forms
which can be instantiatedwith different resource assign-
ments. Such capabilitiesto predict other instancesof a
schema,in turn, could leadto significantlymore advanced
representationalabstractionsandpotentiallyto metaphorical
extensionswhereby schemataareextendedto otherphysical
examplesof thatphenomenon.
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